New insights into the evolutionary links relating to the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase subfamilies.
نویسندگان
چکیده
Bacterial 3-deoxy-d-arabino-heptulosonate 7-phosphate synthases (DAHPSs) have been divided into either of two classes (Class I/Class II) or subfamilies (AroAI(alpha)/AroAI(beta)). Our investigation into the biochemical properties of the unique bifunctional DAHPS from Bacillus subtilis provides new insight into the evolutionary link among DAHPS subfamilies. In the present study, the DAHPS (aroA) and chorismate mutase (aroQ) activities of B. subtilis DAHPS are separated by domain truncation. Detailed enzymatic studies with the full-length wild-type protein and the truncated domains led to our hypothesis that the aroQ domain was fused to the N terminus of aroA in B. subtilis during evolution for the purpose of feedback regulation and not for the creation of a bona fide bifunctional enzyme. In addition, examination of aroA and aroQ fusion proteins from Porphyromonas gingivalis, in which the aroQ domain is fused to the C terminus of aroA, further supports the hypothesis. These results, along with sequence structure analysis of the DAHPS families suggest that "feedback regulation" may indeed be the evolutionary link between the two classes/subfamilies. It is likely that DAHPSs evolved from a primitive unregulated member of the AroAI(beta) subfamily. During evolution, some members of the AroAI(beta) subfamily remained unregulated, whereas other members acquired an extra domain for feedback regulation. The AroAI(alpha) subfamilies, however, evolved in a more complex manner to acquire insertions/extensions in the (beta/alpha)(8) barrel to function as regulatory elements.
منابع مشابه
Substrate ambiguity of 3-deoxy-D-manno-octulosonate 8-phosphate synthase from Neisseria gonorrhoeae in the context of its membership in a protein family containing a subset of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases.
3-Deoxy-D-manno-octulosonate 8-phosphate (KDOP) synthase and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyze similar phosphoenolpyruvate-utilizing reactions. The genome of Neisseria gonorrhoeae contains one gene encoding KDOP synthase and one gene encoding DAHP synthase. Of the two nonhomologous DAHP synthase families known, the N. gonorrhoeae protein belongs to the family ...
متن کاملRegulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).
A pattern of allosteric control for aromatic biosynthesis in cyanobacteria relies upon early-pathway regulation as the major control point for the entire branched pathway. In Synechococcus sp. strain PCC6301 (Anacystis nidulans), two enzymes which form precursors for L-phenylalanine biosynthesis are subject to control by feedback inhibition. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase ...
متن کاملCloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase.
In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme.
متن کامل3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli.
The phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (7-phospho-2-keto-3-deoxy-D-arabino-heptonate D-erythrose-4-phosphate lyase (pyruvate phosphorylating), EC 4.2.1.15) was purified to apparent homogeneity from extracts of Escherichia coli K12. The enzyme has a molecular weight of 140,000 as judged by gel filtration and sedimentation equilibrium analysis. The enzyme...
متن کاملCrystallization and preliminary X-ray analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine inhibitable) from Saccharomyces cerevisiae.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (E.C. 4.1.2.15) catalyses the first step in the biosynthesis of aromatic amino acids: the condensation of phophoenolpyruvate and erythrose 4-phosphate to 3-deoxy-D-arabino-heptulosonate-7-phosphate. Diffraction-quality crystals of the tyrosine-inhibitable form of the enzyme from Saccharomyces cerevisiae have been obtained by the hanging-drop ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 7 شماره
صفحات -
تاریخ انتشار 2006